SurveyMonkey는 ‘설문 응답 수집’ 수단(컬렉터)으로 메일로 보내기, 웹 링크 받기, 소셜 미디어에 게시하기, 웹 사이트에 삽입하기, 모바일 앱에 삽입하기, 데이터 직접 추가하기의 총 여섯 가지 컬렉터를 제공하고 있습니다. 이 중 가장 기본이 되는 웹 링크에 대해서는 지난 포스팅에서 자세하게 알아 보았습니다.

 

14. 서베이몽키 웹 링크①

15. 서베이몽키 웹 링크②

 

① SurveyMonkey 이메일 초대장을 이용한 이메일 조사는 메일 수신자를 입력하는 것으로 시작합니다. ② CSV파일을 업로드하거나 Gmail, 이미 SurveyMonkey에 업로드한 연락처 등과 연동하여 대량으로 수신자를 추가할 수도 있습니다. 이미 관리하고 있는 엑셀 양식의 고객 명단이 있다면 저장 양식을 CSV로 지정하여 저장한 후 업로드하여 활용하면 됩니다.

 

 

③ 메일 수신 대상자를 입력한 후에는 설문조사 안내를 위한 메시지를 입력합니다. ④ 사용자 html 모드에서는 html 스크립트를 이용해서 좀 더 다양하고 자유롭게 설문조사 안내 메시지를 작성할 수 있습니다.

 

 

⑤ SurveyMonkey 이메일 초대장은 바로 발송할 수도 있고 예약 발송할 수도 있습니다. SurveyMonkey는 이메일 초대장 발송 전 스팸 여부를 검토한 후 발송을 승인하고 있습니다. ⑥ 이메일 조사의 진행 상황을 확인 후 더 많은 수신자를 추가하거나 설문 참여를 독려하는 알림을 반복적으로 보낼 수도 있습니다.

 

 

궁금하신 점이 있으면 아래 버튼을 클릭해 주세요. 성실하게 답변드리겠습니다!

 

 

 

 

 

 

 

 

 

Posted by dooka
,

서베이몽키 PLATINUM 계정에서는 설문을 몇 개의 블록으로 묶어서 로직을 적용할 수 있는 ‘블록 무작위화’ 기능을 제공하고 있습니다.. ‘블록 무작위화’ 기능은 광고시안 평가와 같이 서로 다른 자극물에 대해 동일한 내용의 설문을 진행해야 하는 경우에 자극물별로 동일한 내요의 설문을 블록화해서 무작위화함으로써 순서에 따는 비확률오차를 평균적으로 제어할 수 있습니다.

‘블록 무작위화’ 기능을 활성화하기 위해서는 우선 ① 서베이몽키 ‘설문 디자인’ 페이지 좌측 리모콘 모양 메뉴에서 ‘로직’ 을 선택한 후 ‘블록 무작위화’를 선택합니다. ② 블록화할 설문을 선택해서 블록으로 만들어 줍니다. ③ 블록에 로직을 설정해 줍니다. 이렇게 하면 블록으로 설정한 부분을 블록 단위로 무작위 노출할 수 있습니다. 총 9페이지 분량의 설문이 있다고 할 때, 아래와 같이 블록을 지정해 무작위화하면 페이지 1 노출 후 블록 단위로 노출 순서가 무작위화되어 순서 효과가 미치는 영향이 특정 자극물에 집중될 가능성을 배제할 수 있게 됩니다.

블록 무작위화 예시 설문은 아래 링크를 참고하십시오.

(블록 무작위화 예시 링크 : goo.gl/wE23rg )

 

궁금하신 점이 있으면 아래 버튼을 클릭해 주세요. 성실하게 답변드리겠습니다!  

Posted by dooka
,

주어진 신뢰수준 하에서 표본크기가 주어지면 오차한계를 계산할 수 있으며 최대허용오차를 결정하고 나면 필요한 표본크기를 알 수 있습니다. 이제 오차한계를 이용해 표본크기를 구해 보겠습니다. 구체적인 표본크기 결정 과정은 아래와 같습니다.

 

 

비복원추출일 경우 허용오차한계를 알기 위해서는 모집단의 크기를 알아야 합니다. 그러나, 모집단의 크기가 표본에 비해 매우 큰 경우에는 복원추출과 비복원추출의 차이가 거의 없게 되기 때문에 모집단의 크기를 아는 것의 의미는 크게 줄어들게 됩니다.

목표 표본크기는 오차한계와 신뢰수준을 결정함으로써 결정합니다. 오차한계는 표본통계량(표본평균)과 모집단 특성치(모평균)의 최대허용오차를 의미하며 표본추출을 반복함에 따라 표본통계량이 관심 있는 모집단의 특성치를 얼마나 오차없이 반영하는지를 나타내는 개념입니다. 신뢰수준은 표본추출을 반복할 경우 그 결과를 평균적으로 얼마나 신뢰할 수 있는지 나타냅니다. 오차한계가 작을수록 모집단 특성치에 대한 유용한 정보를 제공하지만 오차한계가 작아지면 모집단에 대한 추론이 틀릴 가능성도 높아지게 됩니다. 그러므로 표본조사의 결과에 대해 평균적으로 어느 정도의 신뢰수준을 확보할 지 결정한 후에 허용 오차한계를 충족하는 최소한의 표본크기를 찾는 방식으로 표본크기를 결정합니다. 오차한계는 비율개념으로 볼 때 10%를 넘지 않는 것이 좋으며, 표본조사의 결과 해석이 의사결정의 품질을 하락시키지 않기 위해서는 신뢰수준을 90% 이하로 낮추는 것은 바람직하지 않습니다. 일반적으로 신뢰수준은 95%가 통용되고 있습니다.

신뢰수준 95%를 가정했을 때 허용가능한 표본오차의 한계를 표본평균-모평균=d라고 하면 오차한계=표본평균-모평균이 d보다 같거나 작을 확률은 다음과 같습니다.

   

표본크기 n인 표본이 평균이 μ이고 분산이 σ2인 모집단으로부터 얻어진 확률표본이고 표본크기가 충분히 크다면 중심극한정리를 적용할 수 있고 근사적으로 표본평균 는 평균이 이고 표본평균의 분산이 σ2/n인 정규분포를 따르게 됩니다. 그러므로, 정규분포의 성질에 따라 아래 Z는 근사적으로  평균이 0이고 분산이 1인 표준정규분포를 따릅니다.   

그러므로, 다음이 성립하고 표준정규분포에서 면적이 0.95 즉 신뢰수준이 0.95인 표준정규분포변수의 값을 계산하여 비교하면 허용오차한계에 대응하는 최소 표본크기를 계산할 수 있습니다.

오차한계는 주어진 신뢰수준 하에서 좌우대칭이 되도록 설정합니다. 왜냐하면 면적으로 확률을 계산하므로 비대칭으로 오차한계를 설정하게 되면 동일한 확률에 대해 상대적으로 큰 오차를 허용할 수 밖에 없기 때문입니다. 좌우대칭 형태로 오차한계를 설정하기 때문에 신뢰수준 95%에 해당하는 표준정규분포 변수 값을 구하기 위해서는 P(Z≦Z0.025)-P(Z≦-Z0.025)=97.5%-2.5% =95%를 만족하는 Z0.025값을 찾으면 됩니다. Z0.025는 표준정규분포에서 Z0.025보다 같거나 작을 확률이 100%-2.5%=97.5%을 만족하는 표준정규분포 변수의 값을 의미합니다. 이 변수값의 표기를 Z0.975로 하지 않고 Z0.025로 표기하는 이유는 일반적인 표기이기도 하거니와, 나중에 가설검정을 위해서도 편리하기 때문입니다.

 

 

이제 오픈소스 통계프로그램인 R에서 Z0.025와 -Z0.025의 값을 구해 보겠습니다. R에서 표준정규분포 확률에 해당하는 변수의 값을 계산하는 명령어는 ‘qnorm(확률)’입니다. 입력해야 할 확률은 각각 97.5%와 2.5%이므로 R에서 qnorm 명령어를 실행하면 Z0.025=1.96이 됩니다. 정규분포는 좌우대칭을 이루고 있으므로 Z1-0.025=-Z0.025=-1.96이 됨을 확인할 수 있습니다.

> qnorm(0.975)

[1] 1.959964

> qnorm(0.025)

[1] -1.959964

 

신뢰수준 95% 하에서 최대 허용오차에 대응하는 최소 필요 표본크기를 알기 위해  을 표본크기 n에 대해 정리해보면 표본크기 n은 최소한 보다는 크거나 같아야 함을 알 수 있습니다. 아래 표본크기의 산출공식

은 모집단의 크기가 표본크기에 비해 매우 커서 복원추출과 거의 차이가 없는 경우 적용할 수 있는 공식입니다.

 

 

 

 

예를 들어 편의점을 통해 새로운 간편식품 판매를 고려하고 있는 기업이 경쟁 제품 구매자를 대상으로 신제품 구매의향 가격을 조사한다고 생각해보겠습니다. 선행조사를 통해 표준편차 σ는 560으로 알려져 있고 구매의향 가격의 허용오차를 100원 이내로 제어하고 싶다면 필요한 최소한 표본크기가 121명 이상인 표본을 추출해야 합니다.

 

우리가 흔히 접하는 비율 역시 수리적으로는 평균이므로 중심극한정리를 적용해 필요한 표본크기를 알아 볼 수 있습니다. 어떤 도시에서 특정 후보에 대한 지지율이 60%가 되는지 알아보기 위해 표본조사를 실시할 경우 신뢰수준 95% 하에서 지지율의 허용 오차한계를 5% 이내로 제어하고 싶다면 어느 정도의 표본이 필요한지 알아보겠습니다.

우선 지지율 은 평균이 0.6 이고 분산이 0.6(1-0.6)/n인 분포를 따르고 확률표본의 조건을 충족할 경우 중심극한정리에 의해 근사적으로 정규분포를 따르게 됩니다.

 

표본크기를 기준으로 최대허용오차를 정리하면 최소 369명의 표본이 필요함을 알 수 있습니다.

이렇게 목표 표본크기를 구했다면 응답률을 고려해 표본추출 작업을 수행해야 합니다. 예를 들어 그간의 경험을 통해 응답률이 25% 내외라는 것을 알고 있고 최종 목표 표본크기가 100명이라면 표본추출 시 100/25%=400명 내외의 표본을 추출해야 합니다.

지금까지 살펴본 표본크기 결정방법은 기본적으로 하나의 질문, 하나의 변수를 기준으로 한 방법입니다. 그러므로 실제 설문조사에서는 꼭 필요하거나 응답 대상자 분류의 기준이 되는 변수를 기준으로 표본크기를 정하게 됩니다. 만약 시장점유율 10%인 양문형 냉장고 브랜드 A를 포함한 양문형 냉장고 카테고리 소비자 대상 설문조사를 기획할 경우 표본크기가 100명이라면 A 브랜드 구매자는 10명에 불과합니다. 또한 연령별 행태의 차이를 보기 위해 연령별로 자료를 구분해 보면 연령별 사례수는 더욱 감소합니다.

그래서 목표시장인 25세~35세 여성의 A 브랜드 구매 행태를 정밀하게 보기 위해 25~29세 50명, 30~35세 50명, 총 100명의 A 브랜드 구매자를 표본에 포함시키기로 했다면 전체 목표 표본크기는 1,000명이 되고 응답률이 25%라면 총 4,000명을 표본추출해야 합니다. 만약 4,000명의 표본크기가 필요한 정보와 확보 예산에 비해 너무 크다고 판단한다면 전체 양문형 냉장고 시장에 대해서는 400명 내외의 표본으로 전체 시장을 살펴보고 400명 중에 포함된 A 브랜드 구매자 40명 외에 A 브랜드 구매자 60명만을 추가로 조사해 A 브랜드에 대해서는 40명+60명=100명을 대상으로 A 브랜드의 세부사항에 대해 알아 볼 수도 있습니다. 이렇게 특정 집단에 속하는 응답자를 추가로 조사할 경우, 추가 조사를 본 조사와 분리하여 진행해야 합니다. 예를 들어 오프라인에서 일대일조사를 통해 본 조사에 더하여 추가 조사를 실시할 경우 담당 조사원이나 조사 시기를 분리하지 않으면 중요한 지표가 과대 추정되거나 과소 추정될 수 있습니다.

궁금하신 점이 있으면 아래 버튼을 클릭해 주세요. 성실하게 답변드리겠습니다!  

                                                     

 

 

 

 

 

 

 

 

'야행하는 리서치' 카테고리의 다른 글

33. 설문지의 순서배열  (0) 2017.07.20
32. 설문지 작성 방법  (0) 2017.07.17
30. 표본오차의 이해  (0) 2017.05.08
29. 표본분포와 중심극한정리  (0) 2017.05.03
28. 표본조사와 표본통계량  (0) 2017.05.03
Posted by dooka
,